Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(2-1): 024107, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491644

RESUMO

Cooperation and defection are social traits whose evolutionary origin is still unresolved. Recent behavioral experiments with humans suggested that strategy changes are driven mainly by the individuals' expectations and not by imitation. This work theoretically analyzes and numerically explores an aspiration-driven strategy updating in a well-mixed population playing games. The payoffs of the game matrix and the aspiration are condensed into just two parameters that allow a comprehensive description of the dynamics. We find continuous and abrupt transitions in the cooperation density with excellent agreement between theory and the Gillespie simulations. Under strong selection, the system can display several levels of steady cooperation or get trapped into absorbing states. These states are still relevant for experiments even when irrational choices are made due to their prolonged relaxation times. Finally, we show that for the particular case of the prisoner dilemma, where defection is the dominant strategy under imitation mechanisms, the self-evaluation update instead favors cooperation nonlinearly with the level of aspiration. Thus, our work provides insights into the distinct role between imitation and self-evaluation with no learning dynamics.


Assuntos
Comportamento Cooperativo , Teoria do Jogo , Humanos , Evolução Biológica , Dilema do Prisioneiro , Aprendizagem
2.
Phys Rev E ; 107(5-1): 054302, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37329013

RESUMO

Although the cooperative dynamics emerging from a network of interacting players has been exhaustively investigated, it is not yet fully understood when and how network reciprocity drives cooperation transitions. In this work, we investigate the critical behavior of evolutionary social dilemmas on structured populations by using the framework of master equations and Monte Carlo simulations. The developed theory describes the existence of absorbing, quasiabsorbing, and mixed strategy states and the transition nature, continuous or discontinuous, between the states as the parameters of the system change. In particular, when the decision-making process is deterministic, in the limit of zero effective temperature of the Fermi function, we find that the copying probabilities are discontinuous functions of the system's parameters and of the network degrees sequence. This may induce abrupt changes in the final state for any system size, in excellent agreement with the Monte Carlo simulation results. Our analysis also reveals the existence of continuous and discontinuous phase transitions for large systems as the temperature increases, which is explained in the mean-field approximation. Interestingly, for some game parameters, we find optimal "social temperatures" maximizing or minimizing the cooperation frequency or density.


Assuntos
Comportamento Cooperativo , Teoria do Jogo , Simulação por Computador , Evolução Biológica , Método de Monte Carlo
3.
Phys Rev E ; 101(2-1): 022204, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32168607

RESUMO

We propose a metric to characterize the complex behavior of a dynamical system and to distinguish between organized and disorganized complexity. The approach combines two quantities that separately assess the degree of unpredictability of the dynamics and the lack of describability of the structure in the Poincaré plane constructed from a given time series. As for the former, we use the permutation entropy S_{p}, while for the latter, we introduce an indicator, the structurality Δ, which accounts for the fraction of visited points in the Poincaré plane. The complexity measure thus defined as the sum of those two components is validated by classifying in the (S_{p},Δ) space the complexity of several benchmark dissipative and conservative dynamical systems. As an application, we show how the metric can be used as a powerful biomarker for different cardiac pathologies and to distinguish the dynamical complexity of two electrochemical dissolutions.

4.
Phys Rev E ; 100(5-1): 052305, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31869909

RESUMO

We explore the consequences of introducing higher-order interactions in a geometric complex network of Morris-Lecar neurons. We focus on the regime where traveling synchronization waves are observed from a first-neighbors-based coupling to evaluate the changes induced when higher-order dynamical interactions are included. We observe that the traveling-wave phenomenon gets enhanced by these interactions, allowing the activity to travel further in the system without generating pathological full synchronization states. This scheme could be a step toward a simple phenomenological modelization of neuroglial networks.


Assuntos
Modelos Neurológicos , Rede Nervosa/citologia , Neurônios/citologia
5.
Phys Rev E ; 99(1-1): 012310, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30780205

RESUMO

We explore the relation between the topological relevance of a node in a complex network and the individual dynamics it exhibits. When the system is weakly coupled, the effect of the coupling strength against the dynamical complexity of the nodes is found to be a function of their topological roles, with nodes of higher degree displaying lower levels of complexity. We provide several examples of theoretical models of chaotic oscillators, pulse-coupled neurons, and experimental networks of nonlinear electronic circuits evidencing such a hierarchical behavior. Importantly, our results imply that it is possible to infer the degree distribution of a network only from individual dynamical measurements.

6.
Sci Rep ; 8(1): 8629, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29872135

RESUMO

Relay (or remote) synchronization between two not directly connected oscillators in a network is an important feature allowing distant coordination. In this work, we report a systematic study of this phenomenon in multiplex networks, where inter-layer synchronization occurs between distant layers mediated by a relay layer that acts as a transmitter. We show that this transmission can be extended to higher order relay configurations, provided symmetry conditions are preserved. By first order perturbative analysis, we identify the dynamical and topological dependencies of relay synchronization in a multiplex. We find that the relay synchronization threshold is considerably reduced in a multiplex configuration, and that such synchronous state is mostly supported by the lower degree nodes of the outer layers, while hubs can be de-multiplexed without affecting overall coherence. Finally, we experimentally validated the analytical and numerical findings by means of a multiplex of three layers of electronic circuits.

7.
Sci Rep ; 7: 45475, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28374802

RESUMO

Inter-layer synchronization is a dynamical process occurring in multi-layer networks composed of identical nodes. This process emerges when all layers are synchronized, while nodes in each layer do not necessarily evolve in unison. So far, the study of such inter-layer synchronization has been restricted to the case in which all layers have an identical connectivity structure. When layers are not identical, the inter-layer synchronous state is no longer a stable solution of the system. Nevertheless, when layers differ in just a few links, an approximate treatment is still feasible, and allows one to gather information on whether and how the system may wander around an inter-layer synchronous configuration. We report the details of an approximate analytical treatment for a two-layer multiplex, which results in the introduction of an extra inertial term accounting for structural differences. Numerical validation of the predictions highlights the usefulness of our approach, especially for small or moderate topological differences in the intra-layer coupling. Moreover, we identify a non-trivial relationship connecting the betweenness centrality of the missing links and the intra-layer coupling strength. Finally, by the use of multiplexed layers of electronic circuits, we study the inter-layer synchronization as a function of the removed links.

8.
Chaos ; 26(6): 065304, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27368794

RESUMO

Inter-layer synchronization is a distinctive process of multiplex networks whereby each node in a given layer evolves synchronously with all its replicas in other layers, irrespective of whether or not it is synchronized with the other units of the same layer. We analytically derive the necessary conditions for the existence and stability of such a state, and verify numerically the analytical predictions in several cases where such a state emerges. We further inspect its robustness against a progressive de-multiplexing of the network, and provide experimental evidence by means of multiplexes of nonlinear electronic circuits affected by intrinsic noise and parameter mismatch.

9.
Sci Rep ; 6: 21297, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26887684

RESUMO

Real-world networks have distinct topologies, with marked deviations from purely random networks. Many of them exhibit degree-assortativity, with nodes of similar degree more likely to link to one another. Though microscopic mechanisms have been suggested for the emergence of other topological features, assortativity has proven elusive. Assortativity can be artificially implanted in a network via degree-preserving link permutations, however this destroys the graph's hierarchical clustering and does not correspond to any microscopic mechanism. Here, we propose the first generative model which creates heterogeneous networks with scale-free-like properties in degree and clustering distributions and tunable realistic assortativity. Two distinct populations of nodes are incrementally added to an initial network by selecting a subgraph to connect to at random. One population (the followers) follows preferential attachment, while the other population (the potential leaders) connects via anti-preferential attachment: they link to lower degree nodes when added to the network. By selecting the lower degree nodes, the potential leader nodes maintain high visibility during the growth process, eventually growing into hubs. The evolution of links in Facebook empirically validates the connection between the initial anti-preferential attachment and long term high degree. In this way, our work sheds new light on the structure and evolution of social networks.


Assuntos
Modelos Teóricos , Apoio Social , Humanos
10.
Artigo em Inglês | MEDLINE | ID: mdl-25871161

RESUMO

We study the organization of finite-size, large ensembles of phase oscillators networking via scale-free topologies in the presence of a positive correlation between the oscillators' natural frequencies and the network's degrees. Under those circumstances, abrupt transitions to synchronization are known to occur in growing scale-free networks, while the transition has a completely different nature for static random configurations preserving the same structure-dynamics correlation. We show that the further presence of degree-degree correlations in the network structure has important consequences on the nature of the phase transition characterizing the passage from the phase-incoherent to the phase-coherent network state. While high levels of positive and negative mixing consistently induce a second-order phase transition, moderate values of assortative mixing, such as those ubiquitously characterizing social networks in the real world, greatly enhance the irreversible nature of explosive synchronization in scale-free networks. The latter effect corresponds to a maximization of the area and of the width of the hysteretic loop that differentiates the forward and backward transitions to synchronization.


Assuntos
Modelos Teóricos
11.
Artigo em Inglês | MEDLINE | ID: mdl-26764757

RESUMO

Synchronization of networked oscillators is known to depend fundamentally on the interplay between the dynamics of the graph's units and the microscopic arrangement of the network's structure. We here propose an effective network whose topological properties reflect the interplay between the topology and dynamics of the original network. On that basis, we are able to introduce the effective centrality, a measure that quantifies the role and importance of each network's node in the synchronization process. In particular, in the context of explosive synchronization, we use such a measure to assess the propensity of a graph to sustain an irreversible transition to synchronization. We furthermore discuss a strategy to induce the explosive behavior in a generic network, by acting only upon a fraction of its nodes.

12.
Phys Rep ; 544(1): 1-122, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32834429

RESUMO

In the past years, network theory has successfully characterized the interaction among the constituents of a variety of complex systems, ranging from biological to technological, and social systems. However, up until recently, attention was almost exclusively given to networks in which all components were treated on equivalent footing, while neglecting all the extra information about the temporal- or context-related properties of the interactions under study. Only in the last years, taking advantage of the enhanced resolution in real data sets, network scientists have directed their interest to the multiplex character of real-world systems, and explicitly considered the time-varying and multilayer nature of networks. We offer here a comprehensive review on both structural and dynamical organization of graphs made of diverse relationships (layers) between its constituents, and cover several relevant issues, from a full redefinition of the basic structural measures, to understanding how the multilayer nature of the network affects processes and dynamics.

13.
Artigo em Inglês | MEDLINE | ID: mdl-24229226

RESUMO

The emergence of dynamical abrupt transitions in the macroscopic state of a system is currently a subject of the utmost interest. Given a set of phase oscillators networking with a generic wiring of connections and displaying a generic frequency distribution, we show how combining dynamical local information on frequency mismatches and global information on the graph topology suggests a judicious and yet practical weighting procedure which is able to induce and enhance explosive, irreversible, transitions to synchronization. We report extensive numerical and analytical evidence of the validity and scalability of such a procedure for different initial frequency distributions, for both homogeneous and heterogeneous networks, as well as for both linear and nonlinear weighting functions. We furthermore report on the possibility of parametrically controlling the width and extent of the hysteretic region of coexistence of the unsynchronized and synchronized states.


Assuntos
Modelos Teóricos , Fatores de Tempo
14.
Sci Rep ; 3: 1281, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23412391

RESUMO

The emergence of dynamical abrupt transitions in the macroscopic state of a system is currently a subject of the utmost interest. The occurrence of a first-order phase transition to synchronization of an ensemble of networked phase oscillators was reported, so far, for very particular network architectures. Here, we show how a sharp, discontinuous transition can occur, instead, as a generic feature of networks of phase oscillators. Precisely, we set conditions for the transition from unsynchronized to synchronized states to be first-order, and demonstrate how these conditions can be attained in a very wide spectrum of situations. We then show how the occurrence of such transitions is always accompanied by the spontaneous setting of frequency-degree correlation features. Third, we show that the conditions for abrupt transitions can be even softened in several cases. Finally, we discuss, as a possible application, the use of this phenomenon to express magnetic-like states of synchronization.

15.
Phys Rev Lett ; 108(22): 228701, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23003663

RESUMO

We introduce an easily computable topological measure which locates the effective crossover between segregation and integration in a modular network. Segregation corresponds to the degree of network modularity, while integration is expressed in terms of the algebraic connectivity of an associated hypergraph. The rigorous treatment of the simplified case of cliques of equal size that are gradually rewired until they become completely merged, allows us to show that this topological crossover can be made to coincide with a dynamical crossover from cluster to global synchronization of a system of coupled phase oscillators. The dynamical crossover is signaled by a peak in the product of the measures of intracluster and global synchronization, which we propose as a dynamical measure of complexity. This quantity is much easier to compute than the entropy (of the average frequencies of the oscillators), and displays a behavior which closely mimics that of the dynamical complexity index based on the latter. The proposed topological measure simultaneously provides information on the dynamical behavior, sheds light on the interplay between modularity and total integration, and shows how this affects the capability of the network to perform both local and distributed dynamical tasks.


Assuntos
Modelos Teóricos , Integração de Sistemas
16.
Phys Rev Lett ; 108(16): 168702, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22680761

RESUMO

Critical phenomena in complex networks, and the emergence of dynamical abrupt transitions in the macroscopic state of the system are currently a subject of the outmost interest. We report evidence of an explosive phase synchronization in networks of chaotic units. Namely, by means of both extensive simulations of networks made up of chaotic units, and validation with an experiment of electronic circuits in a star configuration, we demonstrate the existence of a first-order transition towards synchronization of the phases of the networked units. Our findings constitute the first prove of this kind of synchronization in practice, thus opening the path to its use in real-world applications.


Assuntos
Dinâmica não Linear , Comportamento , Relógios Biológicos
17.
IEEE Trans Biomed Eng ; 58(10): 3004-7, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21724498

RESUMO

We propose a new methodology to evaluate the balance between segregation and integration in functional brain networks by using singular value decomposition techniques. By means of magnetoencephalography, we obtain the brain activity of a control group of 19 individuals during a memory task. Next, we project the node-to-node correlations into a complex network that is analyzed from the perspective of its modular structure encoded in the contribution matrix. In this way, we are able to study the role that nodes play I/O its community and to identify connector and local hubs. At the mesoscale level, the analysis of the contribution matrix allows us to measure the degree of overlapping between communities and quantify how far the functional networks are from the configuration that better balances the integrated and segregated activity.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Memória/fisiologia , Rede Nervosa/fisiologia , Idoso , Algoritmos , Humanos , Magnetoencefalografia , Processamento de Sinais Assistido por Computador , Análise e Desempenho de Tarefas
18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(6 Pt 1): 060102, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22304028

RESUMO

We report on the spontaneous emergence of computation from adaptive synchronization of networked dynamical systems. The fundamentals are nonlinear elements, interacting in a directed graph via a coupling that adapts itself to the synchronization level between two input signals. These units can emulate different Boolean logics, and perform any computational task in a Turing sense, each specific operation being associated with a given network's motif. The resilience of the computation against noise is proven, and the general applicability is demonstrated with regard to periodic and chaotic oscillators, and excitable systems mimicking neural dynamics.


Assuntos
Lógica , Modelos Teóricos , Dinâmica não Linear
19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(6 Pt 2): 065101, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22304141

RESUMO

We report synchronization of networked excitable nodes embedded in a metric space, where the connectivity properties are mostly determined by the distance between units. Such a high clustered structure, combined with the lack of long-range connections, prevents full synchronization and yields instead the emergence of synchronization waves. We show that this regime is optimal for information transmission through the system, as it enhances the options of reconstructing the topology from the dynamics. Measurements of topological and functional centralities reveal that the wave-synchronization state allows detection of the most structurally relevant nodes from a single observation of the dynamics, without any a priori information on the model equations ruling the evolution of the ensemble.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(1 Pt 2): 016115, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20866697

RESUMO

Modularity is a fundamental feature of real networks, being intimately bounded to their functionality, i.e., to their capability of performing parallel tasks in a coordinated way. Although the modular structure of real graphs has been intensively studied, very little is known on the interactions between functional modules of a graph. Here, we present a general method based on synchronization of networking oscillators, that is able to detect overlapping structures in multimodular environments. We furthermore report the full analytical and theoretical description on the relationship between the overlapping dynamics and the underlying network topology. The method is illustrated by means of a series of applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...